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1 Introduction 1

Abstract

Stellarators are nuclear fusion devices that confine plasma through non-axisymmetric magnetic
fields. To create such fields, we need complex and precise coils, which are hard to build and ex-
pensive. Therefore, to simplify the configuration of Stellarator coils we implement in this report a
method to create coil curves bounded to a coil winding surface (CWS), with the parameterization
of the curve being the sum of a secular linear term with a Fourier series. Using this method, we
study the individual optimization of coils parameterized to fixed winding surfaces. The degrees of
freedom used in the optimization are the coefficient of the linear term and the Fourier coefficients
of each coil parameterization equation and along with the currents in each coil. This approach is
used to study the viability of using a CWS resulting from rescaling the plasma boundary surface
and comparing it with using a circular toroidal CWS with the same dimensions. As shown here,
a lower plasma confining magnetic field error is obtained using coils parameterized in a surface
rescaled from the plasma boundary rather than in a circular toroidal CWS.

1 Introduction

The climate crisis is, without doubt, one of the biggest problems faced nowadays, becoming irre-
versible and prominent to the planet each year that goes by. This problem is highly aggravated by the
emission of greenhouse gases (GHG), to which the unsustainable use and production of energy heav-
ily contribute. The energy sector is one of the main GHG emitters and their emissions keep increasing
every year that goes by [1]. For these reasons, the energy sector needs to explore other means of en-
ergy production rather than keep using fossil fuels. The Intergovernmental Panel on Climate Change
has indicated that an option to approach and eventually achieve zero GNG and CO2 emissions is the
transition from fossil fuels to low carbon energy sources [2]. However, the decarbonization of the elec-
tricity production sector is an expensive process. Furthermore, current renewable sources of energy
may not be able to produce enough energy to cover the world’s needs, nor be the best solution to
reduce GNG emissions [3].

It is under these circumstances that nuclear fusion starts to grow as a viable candidate for a clean
and safe way to produce energy to meet the world’s increasing energy demand. Nuclear fusion oc-
curs when two particles are brought together such that they overcome the electromagnetic repulsion
between them and the strong force starts to act, in the scale of the particles’ nuclei. From this process
results a decrease of the mass ∆m, therefore energy is released, according to ∆E = ∆mc2. Even though
nuclear fusion fuels the stars, it proves to be very difficult to achieve on Earth. To achieve nuclear
fusion, high temperatures and a reaction with a large cross-section are needed, such as the fusion of
deuterium and tritium, known as the D-T reaction,

2
1D + 3

1T −−→ 4
2He + n0. (1)

In such high temperatures matter exists in the plasma state, where the gas becomes fully ionized.
There are many ways to confine plasma. Since plasma is diamagnetic, it can be confined using

magnetic fields in a process called magnetic confinement. Plasma at high temperatures can damage
the walls of a reactor. Indeed, such damage is one of the main issues that must be accounted for
in fusion devices. To prevent this from happening, we should analyze the behavior of the charged
particles that constitute the plasma.

A charged particle has a helical trajectory along a field line when moving in a constant time-
independent magnetic field. This can be used to trap a particle in the direction perpendicular to a
field line. This field line is called the guiding center. Bending this field lines into a circle shape, thus
creating a toroidal magnetic field, is the basis of toroidal confinement. But because the field decreases
proportionally to the major radius of a torus, and an electric field is created from the charged parti-
cles of the plasma, a drift appears that makes the particles hit the vessel wall [4]. Therefore, a purely
toroidal magnetic field cannot confine a plasma.
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Tokamaks and Stellarators are two types of toroidal magnetic confinement fusion devices that
solve the drift in charged particle motion when interacting with a magnetic and an electric field by
creating field lines that twist around the magnetic flux surfaces, as shown in Fig. 1 (left). These are
surfaces where the magnetic field is only tangent to. This way, the drift will change direction along the
particle motion, being the mean drift along a closed trajectory zero. Tokamaks are axisymmetric and
have a magnetic toroidal field created by external coils and a poloidal field that is created by inducing
a toroidal plasma current, resulting in field lines that are toroidal helices. As a major advantage with
respect to Tokamaks, Stellarators do not need an external current applied to the plasma, they can be
run in a steady state.

However, Stellarators create field lines twisted around the surfaces by breaking axisymmetry,
which can be done by having a non-planar magnetic axis, or by making the flux surfaces rotate
poloidally along the toroidal angle [5]. This proves to be one of the biggest challenges for building
Stellarators since the coils needed to create non-axisymmetric flux surfaces are usually expensive,
difficult to design and build since they are generally non-circular and non-planar and have low tol-
erances, and there are numerous configurations that achieve the same magnetic field. Therefore, coil
optimization is used to obtain the best possible coils that create the desired fields while minimizing
construction difficulties, and this can be done in various ways. In this report, we will do a new ap-
proach to this subject by implementing a class in the Stellarator optimization framework SIMSOPT [6]
in order to create and optimize coils parameterized to a coil winding surface with the goal of reducing
the costs of building coils, by restricting the position of the coils.

2 Materials and Methods

To confine a plasma, the first step is to obtain a magnetic field capable of doing it. This magnetic
field equilibrium can be achieved by solving the static ideal magnetohydrodynamics (MHD) system
of equations. This system of equations combines Maxwell’s electromagnetic equations with fluid dy-
namics, considering that plasma is a single fluid and a perfect electrical conductor without resistivity,
with E + v × B = 0.

Ideal MHD relates the magnetic field B, with the plasma current J density and the plasma pressure
gradient ∇p in a set of equations given by

J × B = ∇p. (2)

By solving this system of equations, we can obtain a magnetic field that confines the plasma and obeys
Maxwell’s equations, namely ∇× B = µ0J and B = 0.

Ideal MHD is valid assuming a high collisionality regime and characteristic frequencies higher
than the electron and ion gyro frequencies [7]. We can conclude from the force balance equations,
Eq. (2), that B and J vectors are coincident with constant ∇p surfaces, as

B · ∇p = J · ∇p = 0, (3)

showing that flux surfaces have constant pressure. Poicaré Index Theorem then implies that a mag-
netic field that confines a plasma must have a toroidal topology [8]. The necessary magnetic field for
plasma confinement is one with flux surfaces nested inside each other.

Although nested surfaces are not guaranteed by the ideal MHD model, we obtain the B field us-
ing VMEC (Variational Moments Equilibrium Code) [9], which solves the MHD equations assuming
a toroidal domain for the equilibrium solution, and assumes nested flux surfaces. VMEC obtains
the MHD equilibrium by minimizing the potential energy of the plasma using the steepest descent
method. The potential energy W is found by integrating Eq. (2) over a volume V, yielding
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FIGURE 1: Left: Poloidally twisted fieldline along the toroidal angle, with a rotational
transform of 1/6. Right: Surface (in blue) and curve (in red) made from Fourier Coeffi-

cients. Xsur f ace = [1, 0.37, 0.37] and Xcurve = [1, 0, 0.7, 0, 0, 0, 0, 0.7, 0].

W =
∫ (

|B|2
2µ0

+
p

γ − 1

)
d3x, (4)

where γ is the adiabatic index (5/3 for a mono-atomic gas). The result is a boundary flux surface in
the form of coefficients of a Fourier series, over a field period. This outermost flux surface is given in
cylindrical coordinates, in the form

R(θ, ϕ) =
mpol

∑
m=0

ntor

∑
n=−ntor

RBCm,n cos (mθ − n f pnϕ), (5)

Z(θ, ϕ) =
mpol

∑
m=0

ntor

∑
n=−ntor

ZBSm,n sin (mθ − n f pnϕ), (6)

where θ ∈ [0, 2π[ is a poloidal angle, ϕ ∈ [0, 2π[ is the standard cylindrical angle and n f p is the
number of field periods. RBCm,n and ZBSm,n are the Fourier coefficients, and since we are working
with surfaces that are symmetric under rotation by π about the x-axis, i.e., have Stellarator-symmetry,
the sine term for R and the cosine term for Z are necessarily zero. The position vector for the surface
is then given in cylindrical coordinates as x = [(R(θ, ϕ) cos (ϕ), R(θ, ϕ) sin (ϕ), Z(θ, ϕ)]. The Fourier
coefficients are Xsur f ace = [RBCm,n, ZBSm,n]. In the same way that surfaces are parameterized by (ϕ, θ),
the external coils that create the magnetic field can be considered as curves parameterized by a single
parameter. We can write the coordinates of the curve as

x(θ) =
order

∑
m=0

xc,m cos (mθ) +
order

∑
m=1

xs,m sin (mθ), (7)

with θ ∈ [0, 2π[. The parameterization equation for y(θ) and z(θ) are analogous to Eq. (7). This way,
to create coils, we only need to know the Fourier coefficients, in the form of Xcurve = [xc,0, xs,1, xc,1, · · · ,
xs,order, xc,order, yc,0, ys,1, yc,1, · · · ]. Hence recreating coils and surfaces becomes an easy task to complete
computationally, with the advantage that a function given by a Fourier series is continuous and differ-
entiable, and we can calculate the analytical derivatives rather easily, instead of being required to rely
on numerical methods such as finite differences. An example of a surface and a curve created from
their Fourier coefficients can be found in Fig. 1 (right).

Once we get a suitable set of nested flux surfaces (described by their outer boundary) for the mag-
netic confinement of plasma, the optimization of the external coils that generate the desired magnetic
field can also be done using optimization codes such as REGCOIL [10], FOCUS [11] or SIMSOPT [6].
In this work, we will use the SIMSOPT code.

SIMSOPT is a framework for Stellarator optimization, written in C++ and in Python, that does
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both the optimization of the boundary flux surface (stage one) and the optimization of coils with the
purpose of finding the coil geometry that creates the desired boundary surface (stage two). In the
SIMSOPT code, coils are defined as parameterized curves with coordinates given by Fourier series, as
explained previously. The degrees of freedom for the optimization are the Fourier coefficients and the
current applied to each coil. The optimization is done by minimizing an objective function J that takes
into account the quadratic flux, defined as the surface integral over the target plasma flux surface of
the square of the magnetic field created by the coils normal to the surface.

J =
1
2

∫ |B · n|2
|B|2 d2x. (8)

If the magnetic field induced by the coils and the target surface are coincident, this integral evaluates
to zero. Additional coil regularization terms can be taken into account with different weights to the
optimization, such as the coil length, curvature, torsion, coil-to-coil distance, and coil-to-surface dis-
tance. In order to study the optimization of coils in a coil winding surface, we will use SIMSOPT, as
well as SciPy [12], for the minimization of the objective function J.

3 Results

To study the optimization of coils in a coil winding surface (CWS), the first thing that must be ad-
dressed is the parameterization of a curve in a surface. When defining a surface using Eqs. (5, 6), this
task resumes to parameterizing θ and ϕ to the same parameter t. Since we want a closed curve, θ(t)
and ϕ(t) must be continuous functions and periodic, of period P . Since sine and cosine functions,
both have a 2π period, we need to guarantee that θ(t + P) = θ(t) + 2kπ, with k an integer, and the
same for ϕ. Therefore, we use a linear term with t ∈ [0, 2π[. We then have

θ(t) = θlt +
order

∑
k=0

θc,m cos(kt) + θs,m sin(kt), (9)

ϕ(t) = ϕlt +
order

∑
k=0

ϕc,m cos(kt) + ϕs,m sin(kt). (10)

Where the order is the number of terms of the Fourier series. This way, it is possible to define θ(t) and
ϕ(t) via the coefficient of the linear term and the Fourier coefficients,

X = [θl , θc,0, · · · , θc,order, θs,0, · · · , θs,order, ϕl , ϕc,0, · · · , ϕc,order, ϕs,0, · · · , ϕs,order]. (11)

These are also the degrees of freedom of the coil optimization. The expressions for θ(t) and ϕ(t) are
then used as an input for R and Z, Eqs. (5, 6), so that the coordinates of a parameterized curve in a
surface are x = x(t) = [(R(θ(t), ϕ(t)) cos (ϕ(t)), R(θ(t), ϕ(t)) sin (ϕ(t)), Z(θ(t), ϕ(t))].

Since this type of curve does not exist in SIMSOPT, the initial step was to implement a class that
allows the creation and optimization of curves parameterized to surfaces, CurveCWSFourier. To create
a curve of this type we need the order of the Fourier series of the parameterizations described by Eqs.
(9, 10), the number of quadrature points to compute the curve, and the degrees of freedom of the θ(t)
and ϕ(t), in Eq. (11). We also need the parameters of the CWS, defined below. The example below
shows how to initialize an object of CurveCWSFourier type.

from simsopt.geo import CurveCWSFourier
Curve = CurveCWSFourier(CWS.mpol , CWS.ntor , CWS.x, quadpoints =150, order=0,

CWS.nfp , CWS.stellsym)
Curve.set_dofs ([1, 0, 0, 0])

Stellarator Optimization/João BIU



3 Results 5

FIGURE 2: Left: Superimposed set of coils and CWS for the NCSX Stellarator. Right:
Cross sections of the CWS (dashed lines) and curves at different toroidal angles ϕ (con-
tinuous lines). The CWS used for both is NCSX’s plasma surface and the curves were

generated using CurveCWSFourier.

In the class constructor CWS.mpol and CWS.ntor are the number of poloidal and toroidal modes of the
CWS, respectively, CWS.x are the CWS degrees of freedom, CWS.nfp is the number of field periods
and CWS.stellsym is its Stellarator-symmetry. The order of the Fourier Series of the curve parameteri-
zations, Eqs. (9, 10) is given by order, and quadpoints is the number of quadrature points in the interval
[0, 2π[ in which the curve coordinates are calculated.

In Fig. 2 (left) are shown CurveCWSFourier curves, using a non-axisymmetric CWS. This class
creates curves by recomputing the surface from its Fourier coefficients, but using Eqs. (9, 10) instead
of θ ∈ [0, 2π[ and ϕ ∈ [0, 2π[. This way we can guarantee curves on the surface and guarantee that
the coordinates of the curves match the surface exactly, as shown in the right figure of Fig. 2. Other
properties of the curves were defined, such as the first, second, and third derivatives of the curve
coordinates, x(t), with respect to the parameter t, and the gradient of the coordinates with respect to
the degrees of freedom defined in Eq. (11). The first derivative of the x(t) with respect to t is given by:

dx(t)
dt

=
mpol

∑
m=0

2ntor

∑
n=0

[
−RBCm, n−ntor sin

(
mθ(t)− n f pnϕ(t)

) (
m

dθ(t)
dt

− n f pn
dϕ(t)

dt

)
cos(ϕ(t))

−RBCm, n−ntor cos
(
mθ(t)− n f pnϕ(t)

)
sin(ϕ(t))

dϕ(t)
dt

]
.

(12)

This was implemented in the files curvecwsfourier.h and curvecwsfourier.cpp. The expressions for dy(t)/dt
and dz(t)/dt are analogous to Eq. (12). The derivatives of Eqs. (9, 10) with respect to t are dθ(t)/dt
and dϕ(t)/dt. Using the secular linear term and a Fourier series for the parameterizations of θ and ϕ
makes it rather easy to calculate the analytic expression of the derivatives.

The implementation of this class and its methods was validated by comparing the results obtained
for the coordinates and derivatives of a CurveCWSFourier object with those of a CurveXYZFourier
object, a curve class from SIMSOPT. To do this, curves with the same sizes, coordinates, and quadra-
ture points were created using both classes, and the values of their methods were compared using
the sum of absolute differences. The values obtained for the sum of the differences were of an order
of 10−15, proving that the implementation was successful. The deviation could be from the computa-
tional errors of calculation values of sine and cosine functions.

For the optimization of coils in a CWS in a Stellarator, a boundary surface was first obtained using
Single-Stage Optimization [13]. This way we could obtain a magnetic field boundary surface for which
the parameterization of the coils in a CWS was taken into account during stage one. This improves
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FIGURE 3: Result of the minimization of the objective function J for each value of the
rescaling factor. Left: Varying RF in the interval from 0.1 to 0.4 meters with a step value
of 2× 10−3 m. Right: Varying RF in the interval from 0.24 to 0.26 meters with a step value

of 1 × 10−4 m.

the quality of the optimization of CurveCWSFourier curves, compared to the optimization where the
desired surface did not take the CWS in account. This surface was used for the multiple stage two
optimizations done next. For the coil optimizations, we used 4 coils per number of field periods and
an order of 10 for the Fourier series in Eqs. (9, 10). Our objective function J took into account the
quadratic flux and additional terms with constraints such as the coil length (lmax ≤ 20 m), the coil-
to-coil distance (dmin ≥ 0.1 m), the curvature of the coil (κmax ≤ 60 m−1), and the mean quadratic
curvature (κmsc ≤ 60 m−2). The minimizations use the L-BFGS-B algorithm for which the analytic
gradients are necessary.

In regard to the optimization of coils in a CWS, we first used a CWS resulting from the rescaling of
the plasma surface, using the surface method implemented on SIMSOPT, extend_via_normal(arg). The
argument of this function is the distance from the original surface to the new rescaled surface used as
CWS. We will address this increment as the rescaling factor (RF). Since the value of RF is the coil-to-
surface distance, we decided to search for the value that minimizes J the most. To do this we did a
sweeping where for each value of RF we ran the stage two optimization in order to find the value of
RF that achieves the minimum value of J. The values of RF went from 0.1 to 0.4 meters with a step
of 2 × 10−3 meters, and the minimizing value of RF found was 0.25 meters, as shown in Fig. 3 (left).
Next, we did a new sweeping in the proximity of the minimum, varying RF between 0.24, and 0.26
meters with a step of 1 × 10−4 meters, as shown in Fig. 3 (right). The value of RF that best minimizes
the objective function is RF = 0.2565 meters, for which J = 2.102 × 10−5.

As we can observe in the left graph of Fig. 3, for RF values in the interval from 0.194 to 0.292 meters,
J has a value in the order of 10−5. Because of this, we expect to obtain good results for optimizations
using these values of RF, and in the instance of building an optimized Stellarator, having a broad
interval of possible coil-to-surface distances could be useful since that in this extra space instruments
for diagnosis of the operation of the device can be implemented.

Using the magnetic field boundary surface obtained from the Single Stage and the value of RF
that minimizes the value of J, for the stage two optimization of coils with a CWS created by rescaling
the magnetic surface, we obtained the configuration shown in Fig. 4. For this optimization the values
obtained were J = 4.723 × 10−6 and the quadratic flux (Eq. (8)) was 3.727 × 10−6. Although the values
obtained were small, in the order of 10−6, we can conclude the effectiveness of the optimization using
a CWS by analyzing the Poincaré Plot in Fig. 5, where we can verify that there is almost no deviation
of field lines from the nested magnetic field surfaces computed using the MHD equilibrium code,
VMEC. Poincaré plots are obtained by tracing the field lines generated by the coils and plotting the
intersection of their trajectories with a plane at a given cylindrical toroidal angle.
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FIGURE 4: Result obtained from stage two optimization of coils in a CWS resulting from
rescaling the magnetic field boundary surface. Left: Transparent CWS. Right: Visible

CWS.

FIGURE 5: Superposition of magnetic surfaces at constant cylindrical toroidal angle ϕ
of the surface obtained with Single-Stage optimization (lines), and the Poincaré plot re-
sulting from tracing magnetic field lines created by the obtained CurveCWSFourier coils

(dots). Left: ϕ = 0π. Right: ϕ = 0.17π.

Engineering-wise, to produce energy from nuclear fusion, there must be in the fusion device a
component named blanket-and-shield between the plasma surface and the CWS. In this component,
the cooling system responsible for capturing the heat from the fusion reaction is built. This heat will
be used to produce electricity. The blanket-and-shield must be 1.2 meters thick [4], corresponding to
the coil-to-surface distance. In our optimization, the coil-to-surface distance is RF = 0.2565 meters,
with the major radius of the plasma boundary being normalized to 1 meter. Doing the rescaling, to
have a coil-to-surface distance of 1.2 meters, the major radius of the magnetic field surface must be
4.678 meters, keeping the same proportionality. Our Stellarator would be smaller than Wendelstein
7-X, with a major radius of 5.5 meters.

To compare the result obtained previously with a circular toroidal CWS, we did an optimization
using a torus whose small radius was the sum of the small radius of plasma boundary surface, given
by the Fourier coefficient ZBS1,0 from Eq. (6), and the value of RF used previously, 0.2565 meters, as
shown in Fig. 6 (right). The value of J obtained was 3.344 × 10−5 and the quadratic flux was 2.887 ×
10−5. Comparing the values obtained, for a circular toroidal CWS, J was 10 times higher than the
values obtained using a CWS rescaled from the plasma boundary surface. There are also magnetic
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FIGURE 6: Left: Circular toroidal CWS. Center: Poincare Plots using a circular toroidal
CWS. Right: Poincaré Plot using a CWS rescaled from the plasma boundary surface with

RF = 0.2522 m.

islands interior and exterior to the boundary surface, and magnetic field lines deviating from the
nested surfaces, as shown in the Poincaré plot for this optimization, in Fig. 6 (center). The magnetic
island chain 3/7 seen in Fig. 6 stems from the fact that the rotational transform at the boundary is close
to a rational number, namely 3/7 where 3 is the number of field periods and 7 the number of islands.
Therefore, we conclude that the use of the CWS created from the rescaling of the plasma boundary has
a better outcome than a circular toroidal one.

Another result worth noting is that using CWS rescaled from the plasma surface, with RF = 0.2522
meters, the value of J obtained is 5.516× 10−6 and we obtain magnetic islands outside of the boundary
surface, as shown in Fig. 6 (right). This value of RF was the second best value for the minimization of
J obtained in the sweeping and this result is relevant because the magnetic islands could prove to be
useful for implementing island divertors [14].

All the code written and results obtained supporting this study can be found on [15].

4 Conclusions

The implementation of CurveCWSFourier allows the optimization and study of Stellarators with coils
parameterized to a specific winding surface. In the study done, we use this approach to optimize coils
in two different surfaces, one resulting from the rescaling of the plasma boundary surface, and the
other being a circular torus.

In regard to the use of a winding surface rescaled from the plasma boundary, from the agreement
between the value obtained from the minimization of the objective function J, 4.723 × 10−6, and the
Poicaré plots in Fig. 4, we can conclude the effectiveness of the optimized configuration of parame-
terized coils in achieving the desired magnetic field. This is not the same case when using a circular
toroidal coil winding surface. In this case, the optimization of the coils was not able to find a coil con-
figuration that generated the desired field. The better results were obtained for a coil winding surface
with more similarities to the plasma boundary, for example, having the same number of field periods
as the boundary surface. It was also shown that the coil-to-surface distance when using a coil winding
surface is an important parameter for achieving different configurations of the magnetic field, such
as magnetic islands in the boundary surface. The behavior of the field for the values of RF where the
optimization is expected to have better results, i.e., in the interval from 0.194 to 0.292 m, as shown
in Fig. 3 (left) could be studied more deeply since the distance between the plasma and the coils is
relevant to the building of the blanket-and-shield of a Stellarator.
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Although we proved that it was possible to use coils parameterized to a winding surface to achieve
a magnetic field close to the desired one, these coils will always be limited in terms of the coil-to-
surface distance, since it depends only on the winding surface. This loss of freedom is compensated
by the torsion of the coils, which proved to be higher than desired in the optimizations done. This will
contribute to the complexity of the coil design, even parameterized to a rather simple CWS such as a
circular torus, going against the goal of reducing the costs of production of coils.

Another future work to be done is the optimization of the coil winding surface simultaneously
with the optimization of curves parameterized to it. Having non-fixed CWS could be beneficial by
bringing more freedom for the shape of the coils, meaning more adaptability to the desired needs
for achieving the best possible magnetic field. This could be allied with Single-Stage Optimization
to optimize the plasma boundary, the coil winding surface, and the coils simultaneously, leading to
become a powerful tool in the design of next-generation fusion reactors.
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