
INSTITUTO SUPERIOR TÉCNICO

UNIVERSIDADE DE LISBOA

PROJETO INTEGRADOR DE 1º CICLO

Design of quasisymmetric fusion devices using
novel machine learning methods

Author:
João CÂNDIDO

Supervisor:
Prof. Rogério JORGE

Research work performed for the Bachelor in Engineering Physics

at

Instituto de Plasmas e Fusão Nuclear
Physics Department

June 16, 2023

http://tecnico.ulisboa.pt
https://www.ulisboa.pt
https://rogeriojorge.com/
https://www.ipfn.tecnico.ulisboa.pt
https://fisica.tecnico.ulisboa.pt/

1 Introduction 1

Abstract

Nuclear fusion could provide safe, clean, and virtually limitless energy production. This work focuses on
stellarator devices as the solution for harnessing fusion energy. However, designing stellarators with precise
magnetic field shaping is a complex task due to the high dimensionality of the problem. A method is proposed
for integrating machine learning techniques, specifically the neural network, with a first-order near-axis ex-
pansion, to map desired characteristics of stellarators to the corresponding magnetic field parameters required
to generate the device. Additionally, the first-order near-axis expansion allowed for the creation of a data set
of quasisymmetric stellarators. The analysis of this set confirmed previous results that showed a clear divi-
sion between well-performing quasi-axisymmetric and quasi-helical stellarators, forming continuous bands for
each number of field periods. High-performing quasi-axisymmetric configurations with a high number of field
periods are found, that have not been previously reported in the literature.

1 Introduction

Nuclear fusion holds excellent promise as a solution to the current energy crisis. Unlike traditional energy
sources, fusion requires a relatively small amount of fuel to generate power. For instance, the energy produced
per kilogram of fuel in a Deuterium-Tritium (D-T) reaction is approximately seven orders of magnitude higher
than the energy released by burning gasoline.1 Deuterium is abundant in Earth’s oceans and tritium can be
obtained from lithium or be a byproduct of fusion reactions. Furthermore, fusion is considered to be a safe
and environmentally sound alternative to other forms of energy production because it does not contribute to
greenhouse gas emissions and unlike nuclear fission, it does not pose a risk of uncontrolled chain reactions nor
generate long-lived radioactive waste. Consequently, fusion could provide safe, clean, and virtually limitless
energy.

During fusion, light nuclei collide forming heavier elements, due to the fact that, for light nuclei, the binding
energy per nucleon increases with nuclear mass, these reactions are exothermic2, releasing energy according to
E = mc2, with m the loss of mass during the reaction. For two particles to undergo fusion they must overcome
the repulsive Coulomb force so that the short-range strong nuclear force can take effect. This means that the
reaction’s cross-section (probability per interaction) is extremely low in Earth’s conditions, but high in stars like
the Sun, due to their high temperature and strong gravitational field.1 There are multiple reaction candidates for
energy production, however, the Deuterium-Tritium (D-T) is the first option, because it has the fastest reaction
rate and requires the lowest temperature.3 The reaction is represented by1

2
1H +3

1 H −→4
2 He(3.5MeV) +1

0 n(14.1MeV). (1)

The triple product nTτE is used to quantify fusion performance in a single value. A lower bound for ignition
(self-sustaining reaction), known as Lawson’s criterion, can be expressed as

nTτE > 3 × 1021 m−3 · keV · s, (2)

where n is the plasma’s density, T is the plasma’s temperature and τE is the energy confinement time, which
can be thought of as the timescale of energy loss from the plasma.1 Ignition is not strictly required for commer-
cial energy production, although achieving this condition equals more energy production which means more
economical viability.4

The two primary approaches to surpassing ignition are inertial confinement, where a dense plasma is held
for a short duration by being compressed by a laser or other pulsed power source, and magnetic confinement,
where the plasma is contained using magnetic fields, produced by coils.5 In these reactors energetic neutrons
leave the plasma and collide with a layer containing lithium, producing tritium that is fed back to the reaction
and generating heat, which will produce electricity on a standard steam cycle.2 This work focuses on magnetic
confinement.

To effectively confine charged particles, a circular magnetic field is not sufficient, due to the existence of
charged particle drifts. The solution is to twist the field lines by introducing a magnetic field that follows a
helical trajectory in both the long way around the torus (toroidal direction) and the short way around the torus
(poloidal angle). In that regard, it is important to consider the rotational transform ι, defined as the average
number of poloidal turns of a field line in one toroidal revolution.6 The tokamak approach achieves this twisting
of the field lines by applying a toroidal electric current, whereas in the stellarator approach, the magnetic field
is shaped using the coils themselves.1 Tokamaks are inherently axisymmetric, guaranteeing the confinement of
all collisionless particle orbits. However, this axisymmetry also makes them susceptible to instabilities caused

Fusion devices and machine learning/João CÂNDIDO

2 Materials and methods 2

by the finite toroidal electric current. On the other hand, stellarators sacrifice this symmetry, resulting in more
complex coil configurations, that do not guarantee particle confinement. Nevertheless, the lack of induced
current enables the plasma to operate in a steady state, effectively avoiding the instabilities encountered in
tokamaks.1,7 This work will focus on stellarators.

Particle confinement on a stellarator requires precise shaping of the magnetic field in a space with high-
dimensionality8 and multiple local minima,9 therefore it is a complex and computationally expensive task,
dependent on initial conditions. To overcome this the Near-Axis (NA) expansion formalism10 is used. This
allows us to perform a global study of the space of optimized stellarators, possibly revealing relevant initial
conditions for posterior optimization.8

However new analytical and numerical techniques are still needed to quickly find globally optimized NA
configurations. Machine learning offers a variety of tools with applications in different branches of physics, in-
cluding nuclear fusion.11,12, One of these tools is the neural network (NN), a computational model inspired by
the brain, consisting of basic computing devices called neurons, connected to each other in a complex commu-
nication network, which can be used for regression tasks.13 In this work neural networks were combined with
the NA expansion in order to obtain a fast and efficient method to generate optimized magnetic field equilibria.
This allows us to generate optimal configurations orders of magnitude faster than previous approaches.

2 Materials and methods

The physical model used to obtain an equilibrium solution is the ideal magnetohydrodynamics (MHD) model.
It describes the plasma as a single fluid. It is obtained from Maxwell’s equations and the MHD model, assuming
static equilibrium as well as the conservation of mass, momentum density, and entropy. The static ideal MHD
equations are as follows1

J × B = ∇p, ∇× B = µ0 J, ∇ · B = 0, (3)

where J is the current density, B is the magnetic field and p is the pressure. These are the equations typically
solved in a stellarator in order to find a magnetic field equilibrium B given a plasma pressure p.

Stellarator design seeks magnetic fields composed of a series of magnetic flux surfaces, i.e., smooth surfaces
in which for every point B · n̂ = 0, where n̂ is a vector normal to the surface, that are continuously nested around
the magnetic axis. It is helpful to introduce a set of non-orthogonal magnetic flux coordinates denominated
Boozer coordinates (ψ, θ, φ), where θ and φ are the poloidal and toroidal angles, respectively, and 2πψ is the
toroidal magnetic flux, which can be thought of as a radial coordinate. The Boozer angles are chosen in a way
that B can be written as1,14

B = ∇ψ ×∇θ + ι∇φ ×∇ψ = β(ψ, θ, φ)∇ψ + I∇θ + G∇φ, (4)

where ι, I and G are constant on flux surfaces, i.e. ι = ι(ψ), I = I(ψ) and G = G(ψ).
Two important conditions in stellarator design are omnigenity and quasisymmetry. Omnigenity ensures that

the time-averaged magnetic drift off of a magnetic surface vanishes for all particles, implying the confinement
of all collisionless particle orbits. Quasisymmetry, a subclass of omnigenity, is characterized by a symmetry in
the field strength.1,15 It is defined in terms of Boozer coordinates as

|B| = B(ψ, θ, φ) = B(ψ, Mθ − Nφ), (5)

where N and M are integers.1 Quasisymmetric stellarators can be divided into three categories: quasi-axi-
symmetric (QA) for N = 0, quasi-helical (QH) symmetric for N ̸= 0 and M ̸= 0, and finally quasi-poloidal
(QP) symmetric for M = 0.1 The latter will not be considered as QP symmetry cannot be constructed near the
magnetic axis.15

A quasisymmetric magnetic field equilibrium can be approximately obtained from the MHD equations with
the use of the NA expansion. By accounting for the conditions of quasisymmetry and stellarator symmetry,
defined as invariance when rotating the stellarator upside down, ψ(R, ϕ, Z) = ψ(R,−ϕ,−Z),1 the following
first-order expression for the magnetic field strength can be derived

|B| = B(r, Mθ − Nφ) = B0[1 + rη̄ cos(θ − Nφ) + O(ϵ2)], (6)

where r =
√

2|ψ|/B0 labels the flux surface and η̄ can be interpreted as a measure of the variation of B.14

Although this work focuses on the first order of the expansion, it is possible to obtain an expression for higher
orders, with the downside that quasisymmetry cannot be obtained for most magnetic axis shapes.8

Fusion devices and machine learning/João CÂNDIDO

3 Results and Discussion 3

To generate quasisymmetric stellarator configurations using the NA expansion, the pyQsc16 Python package
was used. For the first order expansion the required inputs are η̄, and the magnetic axis shape, represented in
cylindrical coordinates (R, ϕ, Z) as

R(ϕ) = rC0 + rC1 cos(n f pϕ), Z(ϕ) = zS1 sin(n f pϕ), (7)

where n f p is a natural number referred to as the number of field periods. After the stellarator is generated
various properties can be obtained. These include L∇B = B

√
2/||∇B||2, where || || represents the Frobenius

norm, L∇B provides an estimate of the minor radius for which the expansion remains accurate (r ≪ L∇B); the
minimum radial location of the axis R0min, useful for assessing if there is enough space for coils in the center of
the device; the rotational transform ι; the length of the magnetic axis L̄, which relates to excursion and therefore
to the complexity of the device;8 the maximum elongation κmax, where k measures the ellipticity of a poloidal
cross-section of the last flux surface;17 and finally the helicity N,18 used to distinguish QA from QH stellarators.
On the one hand, a stellarator requires sufficient ι for confinement, on the other hand, simpler coils require low
L̄ and κ, with the added benefit that a lower elongation reduces the probability of a particle colliding with a
wall.

A neural network consists of a series of layers, each comprising multiple neurons. In the input layer, each
neuron represents an input feature. Followed by hidden layers, in which neurons operate by computing a
weighted sum of the outputs from all connected neurons and passing the result through an activation function,
producing a scalar value that is transmitted to the next layer. Finally, the output layer consists of neurons repre-
senting the network’s outputs. Training a neural network corresponds to fine-tuning the weights and biases to
accurately represent the desired function. This iterative process employs the backpropagation algorithm, which
minimizes a loss function, in this case, the Mean Squared Error (MSE) between the training data outputs, and
the predicted outputs, with the objective of generalizing well to unseen data.13, 19

An optimization algorithm based on backpropagation named Adam is used, as it offers several advantages
over other algorithms. It is computationally efficient and particularly well-suited for problems characterized by
large datasets and high dimensionality.20 The Adam algorithm and other regressors are implemented using the
scikit-learn Python library. Adam’s hyper-parameters (values set before the training process) include alpha (a
regularization term), batch_size (number of points evaluated between updating the weights), learning_rate_init
(initial step used for updating weights), the activation function, and the hidden_layer_sizes (list of the number
of neurons for each layer). In this work, the number of neurons was set to be the same across hidden layers. In
order to prevent overfitting, which occurs when a model becomes too specialized to the training data perform-
ing poorly on unseen data, early stopping is employed, this involves setting aside a portion of the training set to
evaluate the network’s performance during training. If the evaluation on this set does not show improvement,
training is halted, even if the loss function continues to decrease.21 Regressors are evaluated with the R2 score,
which measures how well the regression model fits the data, where 1 is a perfect score.

Cineca’s supercomputer MARCONI was employed to expedite the creation of the dataset and the optimiza-
tion of the neural network. All the code produced for this work is open-source and available in a GitHub
repository22

3 Results and Discussion

3.1 Creating and Analysing the Data Set

The space of quasisymmetric stellarators was mapped by employing both grid and random scans using pyQSC.
The following intervals for the pyQsc inputs were scanned

0 < rC1 ≤ 0.3, −0.3 ≤ zS1 < 0, 1 ≤ n f p ≤ 8, −3 ≤ η̄ ≤ −0.01, (8)

where rC1 and zS1 were set as positive and negative, respectively, in order to select positive ι, avoiding redundant
stellarators. About 2.2 million points were obtained. These are represented in Fig. 1a. A database cleaning was
performed, after which 200’000 devices, represented in Fig. 1b, with the following characteristics, that we term
high-performing, remained

ι > 0.2, κmax < 10, L∇B > 0.2, R0min > 0.4, (9)

Fusion devices and machine learning/João CÂNDIDO

https://github.com/landreman/pyQSC
https://github.com/JoaoAGCandido/PICNeuralNetworkQuasisymmetricStellarator/
https://github.com/JoaoAGCandido/PICNeuralNetworkQuasisymmetricStellarator/

3 Results and Discussion 4

(A) (B)

(C) (D)

FIGURE 1: Data set in terms of the rotational transform and axis length, with paler colors and a
circle marker representing QA stellarators with different n f p and with brighter colors and a triangle
marker representing QH stellarators. Fig. 1a: Complete data set, Fig. 1b: Clean data set, Fig. 1c:
Clean data set zoomed in; Fig. 1d: Stellarators with different n f p but close ι,L̄ and κmax (relative

differences bellow 1%).

(A) (B)

FIGURE 2: Examples of stellarators created with pyQsc. Fig. 2a: Unoptimized stellarator; Fig. 2b:
Optimized stellarator

These conditions were previously used in conjunction with other conditions exclusive for second-order searches
in Ref. [8].

Unlike previous second-order results8 where several QA stellarators with 1 ≤ n f p ≤ 3 and QH stellarators
with n f p ≥ 2 were able to pass the filters, the first-order approach presented in this work did not allow any
QA stellarators with n f p = 1 to pass the filters. However QA devices with higher n f p remained. As we are
aware, there are no high-performing QA stellarators with n f p > 3 previously reported in the literature. As for
the QH stellarators, none of the devices with n f p ≤ 2 was able to pass the filters. It is worth noting that previous
literature implemented a second-order approach, that employed additional filters.8 A notable example of a QA
stellarator with n f p = 4 that successfully passed the filters is provided in Table 1. This particular device exhibits
high ι and low L̄ and κmax, while still accommodating space for coils. Hence, it shows potential as a candidate
for future investigations. As previously observed8, 23, while represented in terms of ι and L̄, QH stellarators
form continuous bands for each n f p spanning high ranges of L̄ (Fig. 1b), while QA devices form these bands for
lower values of ι and L̄ (Fig. 1c). It is also noticeable a clear division between QA and QH solutions (Fig. 1c).

It is numerically and analytically proven24, 25 that for the used representation of the magnetic axis, Eq. (7), the
QA-QH phase transition is independent of zS1 occurring at rC1 = 1/(1 + n2

f p). There are however small errors

Fusion devices and machine learning/João CÂNDIDO

3 Results and Discussion 5

rC1 zS1 n f p η̄ ι L̄ κmax L∇B R0min
0.043 -0.037 4 -0.681 1.303 1.013 5.635 0.4111 0.957

TABLE 1: Characteristics of a well-performing QA stellarator with n f p = 4, obtained using a first-
order NA expansion. Left: pyQsc inputs; Right: Stellarator properties.

(A) (B)

FIGURE 3: Division between QA stellarators (represented with yellow circles) and QH stellarators
(represented with orange triangles) for n f p = 3, red markers indicate devices whose helicity was
not correctly predicted, and green markers represented points whose classification was corrected

with increased resolution. Fig. 3a: Complete data set; Fig. 3b: Clean data set

in the order of 10−4, which can be noticed in a zoomed-in representation of the complete data set (Fig. 3a), these
errors tend to decrease as zS1 furthers from 0 and n f p increases. To assure that these are computational errors,
the incorrectly labeled points, represented in red and calculated with the default toroidal resolution (Nφ = 61),
were compared with the points correctly labeled after a recalculation using a higher resolution (Nφ = 100),
represented in green. The black line represents rC1 = 1/(1 + n2

f p). As expected the errors decreased with a
higher resolution, so it is safe to assume it was a computational error due to insufficient resolution. In contrast,
for dealing with the clean data represented in Fig. 3b, the default resolution is sufficient, as there is a clear gap
between QA and QH devices. It is also notable that in the representation in terms of rC1 and zS1 QA and QH
stellarators that passed the filters also form continuous bands.

3.2 Neural Networks and Regression Models

Instead of generating stellarators with pyQSC, which requires searching through the inputs to find a device with
the desired properties, a regression neural network is trained to map a function
(ι, L̄, κmax) −→ (n f p, rC1, zS1, η̄), allowing stellarators to be directly obtained from their magnetic field proper-
ties.

The first challenge encountered is that neural networks are not suitable for representing non-bijective func-
tions, and as shown in Fig. 1d, there are devices with close properties, but different n f p. To address the issue
of multiple solutions, one approach is to train multiple neural networks, including a term in the loss function
that evaluates the proximity of the predicted functions generated by each network, this means that as the loss
decreases the NNs will diverge from one another allowing multiple solutions.26 However, this complexity is
not necessary for this specific problem. A simpler solution is to train a NN for each n f p, which ensures better
regression by simplifying the predicted function and by removing a feature. This approach also offers the added
benefit of being able to select the desired n f p when obtaining a stellarator. In this work, n f p = 3 is chosen, but
the following procedure is easily replicable for other n f p.

A neural network was created using the Adam algorithm with the following hyper-parameters (HP), from
now on referred to as default: hidden_layer_sizes = (35, 35, 35), activation = ’tanh’, solver = ’adam’, alpha =
0.0001, batch_size = ’auto’, learning_rate_init = 0.001, max_iter =1 000, shuffle = True, to = 0.0001, verbose =
args.verbose, warm_start = False, early_stopping = True, validation_fraction = 0.1, n_iter_no_change = 10. To
ensure reproducibility, all random seeds were set to 0.

The clean data set was chosen to train the NNs, despite being less comprehensive than the complete data
set. This decision was made to enable a more accurate regression of the higher-performing stellarators. Since
the primary objective of this neural network is to find good initial conditions for optimization this trade-off is
reasonable. This unoptimized NN achieved a R2 score of 0.9741 on the test set.

Fusion devices and machine learning/João CÂNDIDO

3 Results and Discussion 6

(A) (B) (C)

FIGURE 4: Mean test score from cross-validation using R2 score, the error bars represent the stan-
dard deviation between folds. (Fig. 4a): alpha; (Fig. 4b): learning_rate_init; (Fig. 4c): batch_size.

(A) (B)

FIGURE 5: R2 test score in terms of the number of points of the training set (the same test set was
used for every evaluation). (Fig. 5a) default NN; (Fig. 5b) optimized NN.

The most important hyperparameters, namely activation, batch_size, alpha, and learning_rate_init were
evaluated through a randomized search using k-fold cross-validation with R2 score. In this approach, the train-
ing set was divided into k=5 subsets. The NN was then trained and evaluated five times, with each subset used
as a validation set while the remaining subsets served as the training data.27 Each HP was evaluated individu-
ally while keeping the rest set to default. The advantage of random sampling of HP is that, unlike grid search,
the number of calculations doesn’t scale exponentially with the number of HPs. Therefore, random sampling
can be several times more efficient than grid search, when dealing with more than 2 or 3 HPs.28

Among the activation functions tested, "tanh" exhibited the highest performance with a score of 0.9734 ±
0.0008, followed by "relu" with a score of 0.9724 ± 0.0022. On the other hand, the "logistic" and "identity" acti-
vation functions performed relatively worse, with scores below 0.9700. Consequently, "tanh" was chosen as the
activation function. As for the hidden_layer_sizes, no single configuration stood out. Several configurations
with depths of 3 or 4 and containing 30 and 45 neurons per layer presented scores above 0.9720, so these config-
urations were selected for further search. From Fig. 4a it can be observed that configurations with alpha bellow
2.5 × 10−4 performed better. The analysis of the Fig. 4b reveals that the score has a peak for learning_rate_init
equal to 0.001. Additionally, Fig. 4c shows that neural networks with batch_size above 150 tended to perform
worse.

Based on the preliminary results, a further search was conducted, scanning the selected hidden_layer_-
sizes and batch_size as well as normal distributions for learning_rate_init and alpha, with (mean, standard
deviation) equal to (1 × 10−3, 2 × 10−4) and (1 × 10−4, 5 × 10−5), respectively. Out of the 40,000 configurations
scanned, the highest-performing setup, as shown in Fig. 6c, was found to have the following HP: alpha = 7.91e-
05, batch_size = 87, hidden_layer_sizes = [45, 45, 45, 45], learning_rate_init = 9.3 × 10−4. This configuration
achieved a cross-validation score of 0.9750 ± 0.0007. To ensure a reliable evaluation, it is important to assess the
model’s performance on an unbiased test set. This set is unbiased because it was not used for training or HP
selection. A R2 score of 0.9734 was achieved, as expected this score is lower than the cross-validation score.

After applying the filters and selecting a value for n f p the number of data points used to train the NN was
significantly reduced to about 34’000. Within this set 10% of the points were allocated for the test set, leaving
approximately 30,500 points in the training set. To assess whether this amount of data is sufficient, the test R2

Fusion devices and machine learning/João CÂNDIDO

3 Results and Discussion 7

(A) (B) (C)

FIGURE 6: Predicted-actual plot, with standardized data, for different regression models. (Fig. 6a):
Linear Regression; (Fig. 6b): Polynomial Regression; (Fig. 6c): NN with optimized hyper-

parameters.

scores were plotted for NNs trained on data sets of varying sizes (Fig. 5). From the graphs, it can be observed that
both functions appear to converge for data set sizes that exceed 22,500 points. However, it is worth noting that
there are instances of NNs trained on similar-sized data sets that differ in R2 score by approximately 0.002. This
indicates that the testing set may not be adequate for accurately evaluating subtle differences in performance
between models. To evaluate the error of the test scores, the standard deviation of the test score was calculated
based on 100 NNs trained and tested on different sets. The obtained results were 0.0016 and 0.0017, for the
optimized and default networks, respectively. These values can be used to assess whether the R2 test score is
capable of reliably evaluating small differences in performance among models.

It is beneficial to compare the performance of the neural network with simpler models, as such linear and
polynomial regression models were fitted. On the polynomial model, the degree HP was set to 12, in an analo-
gous process to the NN HP optimization. On the test data set, the linear model (Fig. 6a) achieved a R2 score of
0.8724, the polynomial regression (Fig. 6b) yielded a higher score of 0.9748.

So far, the errors have been measured by comparing the predicted rC1, zS1 and η̄ with the pyQsc input values
used to obtain ι, L̄ and κmax, which will be referred as model error. However, it is valuable to compare the
pretended ι, L̄ and κmax, with the actual values produced by a stellarator with the predicted rC1, zS1 and η̄. This
will be referred to as the real error. To ensure a fair comparison between ι, L̄, and κmax, all values were scaled
using the same scaler. While examining Fig. 7c it is noticeable that κmax is the primary contributor to the error. Its
relative contribution was calculated with (MSEκmax /3MSE).100% = 94.39%. In comparison ι had a contribution
of 5.34% while L̄ had a contribution of 0.2%. This implies that small errors on the predicted magnetic axis and η̄
can have a significant impact on the maximum elongation. In this analysis, for every model, there are outliers,
these configurations presented κmax ranging from 15 to 1400. All the regressors predicted less than 4 of these
points with κmax < 150, except for the linear regressor which presented 267 points with κmax > 15. Even in
the models with few outliers, these caused a notable increase in the MSE for κmax which was reflected in the
R2 score, in order to obtain a realistic measure of the error, configurations with κmax > 15 were ignored in the
calculation of the MSE (without scaling) and R2 score, these values are represented in parenthesis in Table 2.

Finally all the conditions are met for a fair comparison of the models, by examining Table 2. Considering the
R2

test score, for the model error, it is noticeable that all the models except the linear regressor performed similarly
well, achieving scores over 0.97, the linear model also performed reasonably, accounting for the simplicity of
the regressor. However, analyzing the real error reveals a much poorer performance by all the models. This can
be attributed to error propagation during the generation of configurations with pyQsc. In extreme cases, these
errors can propagate into significant discrepancies in κmax, which significantly impacts the scores.

By excluding points with κmax > 15 when evaluating the real error, we obtain a more reasonable assessment.
Analyzing the R2

test score under these conditions reveals that both the NN and the polynomial still perform
similarly but with lower scores compared with the model error. As it can be seen in Fig. 7a the linear regression
was particularly affected by errors on κmax. Even with the exclusion of the points, its score was reduced to 0.734.
However, this approach might not be suitable for studying the linear regressor, since 7.81% of its predictions
surpass κmax > 15. While analyzing the model error alone might indicate that a polynomial regression is
sufficient for this application, a closer examination of the MSE for each variable, reveals that NNs predicted ι and
κmax more accurately, while the polynomial regressor achieved precise results for L̄, performing worse for the
other variables. Therefore the NN outperforms the polynomial regressor, due to a more balanced distribution

Fusion devices and machine learning/João CÂNDIDO

4 Conclusions and Next steps 8

(A) (B) (C)

FIGURE 7: Predicted-actual plots, comparing the pretended ι, L̄ and κmax with the values obtained
from the predicted magnetic axis and η̄, with standardized data, meaning that the NN inputs and
the resulting ι, L̄ and κmax obtained from pyQsc were normalized with the same scaler. (Fig. 7a): Lin-
ear Regression; (Fig. 7b): Polynomial Regression; (Fig. 7c): NN with optimized hyper-parameters.

Model error Real error
Model R2

test R2
test MSEι MSEL̄ MSEκmax

Linear 0.8724 ± 0.0039 −349 ± 144(0.734 ± 0.013) 0.0609 2.30E-04 3027 (2.00)
Polinomial 0.9748 ± 0.0015 0.2 ± 1836 (0.9520 ± 0.0036) 0.00224 7.85E-08 7.14 (0.389)
Default NN 0.9741 ± 0.0017 0.9 ± 1.2 (0.9578 ± 0.0081) 0.00173 1.34E-06 0.619 (0.343)
Optimised NN 0.9734 ± 0.0016 0.95 ± 0.21 (0.9579 ± 0.0083) 0.00164 3.30E-06 0.376 (0.343)

TABLE 2: Measures for the different models. The uncertainties presented correspond to the stan-
dard deviation of the scores obtained from 100 regressors trained and tested in different data sets.
Model error: refers to comparing the predicted rC1, zS1 and η̄ with the actual value for a deter-
mined ι, L̄ and κmax; Real error: refers to comparing the asked ι, L̄ and κmax with the values ob-
tained from pyQsc with the predicted magnetic axis and η̄, the values of MSE are not standardized
and can be used as an error for the model, values in parenthesis were calculated ignoring points

with κmax > 15.

of the errors across variables.
Comparing the optimized and the default NN reveals that the optimization did not yield significant im-

provements in performance. This supports the claim that the hyper-parameters for the Adam algorithm require
little tuning.20 However, further optimization with different hyper-parameter combinations could possibly pro-
vide better results.

4 Conclusions and Next steps

Firstly, this work consisted of an analysis of the space of quasisymmetric stellarators, using a first-order near-
axis expansion. This analysis confirmed previous second-order results in the organization of QA and QH well-
performing stellarators in continuous bands for different n f p while also uncovering new high-performing con-
figurations of QA devices with high n f p. Secondly, various regressors were trained to establish a mapping
between the desired characteristics of a stellarator and the corresponding elements required to generate the de-
vice. After training and evaluation, it was determined that the neural network performed slightly better than
the polynomial regressor, this can be attributed to a more balanced distribution of errors across the variables.

The high performance of the regressors, coupled with successful analysis of the stellarator space means that
the objectives of this work have been met. However further optimization of the neural network and expansion
of the data set could yield even better results.

The logical next steps involve training models for the remaining n f p and combining them, potentially in
a neural network ensemble, with the integration of a user interface for easy stellarator optimization. Addi-
tionally, it would be interesting to generalize the presented method for higher-order expansion and ultimately
for optimization without the near-axis expansion. Finally, incorporating methods such as online learning or
reinforcement learning could enable the neural network to improve continuously with usage.

Fusion devices and machine learning/João CÂNDIDO

References 9

Overall, this work highlights the potential of machine learning in enhancing the design and optimization of
fusion devices. These advancements could accelerate the progress toward achieving safe, clean, and sustainable
nuclear fusion as a viable solution to the current energy crisis.

References

[1] L.-M. Imbert-Gérard et al. “An Introduction to
Stellarators: From magnetic fields to symmetries
and optimization”. In: arXiv:1908.05360 (2019).

[2] R. D. Gill. Plasma Physics and Nuclear Fusion Re-
search. 1st ed. Academic Press, Wiltshire, 1981.

[3] G. McCracken et al. Fusion: The energy of the uni-
verse. Elsevier Academic Press, San Diego, 2005.

[4] S. E. Wurzel et al. “Progress toward fusion en-
ergy breakeven and gain as measured against
the Lawson criterion”. In: Physics of Plasmas 29
(6 2022), p. 062103.

[5] F. F. Chen. Introduction to Plasma Physics and
Controlled Fusion. 3rd ed. Springer, Los Angeles,
2016.

[6] P. Helander et al. “Plasma Physics and Con-
trolled Fusion Stellarator and tokamak plasmas:
a comparison”. In: Plasma Phys. Control. Fusion 54
(2012), p. 124009.

[7] Y. Xu. “A general comparison between tokamak
and stellarator plasmas”. In: Matter and Radiation
at Extremes 1 (4 2016), pp. 192–200.

[8] M. Landreman. “Mapping the space of qua-
sisymmetric stellarators using optimized near-
axis expansion”. In: Journal of Plasma Physics 88
(6 2022), p. 905880616.

[9] A. Bader et al. “Stellarator equilibria with reac-
tor relevant energetic particle losses”. In: Journal
of Plasma Physics 85 (5 2019), p. 905850508.

[10] D. A. Garren et al. “Existence of quasihelically
symmetric stellarators”. In: Physics of Fluids B:
Plasma Physics 3 (10 1991), pp. 2822–2834.

[11] M. Szűcs et al. “Detecting Plasma Detachment in
the Wendelstein 7-X Stellarator Using Machine
Learning”. In: Applied Sciences 12 (1 2022), p. 269.

[12] J. Kates-Harbeck et al. “Predicting disruptive in-
stabilities in controlled fusion plasmas through
deep learning”. In: Nature 568 (7753 2019),
pp. 526–531.

[13] S. Shalev-Shwartz et al. Understanding ma-
chine learning: From theory to algorithms.
Vol. 9781107057135. Cambridge University
Press, New York, 2013.

[14] M. Landreman et al. “Magnetic well and
Mercier stability of stellarators near the magnetic
axis”. In: Journal of Plasma Physics 86 (5 2020),
p. 905860510.

[15] G. G. Plunk et al. “Direct construction of op-
timized stellarator shapes. Part 3. Omnigenity
near the magnetic axis”. In: Journal of Plasma
Physics 85 (6 2019), p. 905850602.

[16] pyQs. https://github.com/landreman/pyQSC.
2013.

[17] T. C. Luce. “An analytic functional form for
characterization and generation of axisymmetric
plasma boundaries”. In: Plasma Physics and Con-
trolled Fusion 55 (9 2013), p. 095009.

[18] W. Sengupta et al. “Vacuum magnetic fields with
exact quasisymmetry near a flux surface. Part
1: Solutions near an axisymmetric surface”. In:
Journal of Plasma Physics 87 (2 2021), p. 905870205.

[19] M.-C. Popescu et al. “Multilayer perceptron and
neural networks”. In: WSEAS Transactions on Cir-
cuits and Systems 8 (7 2009), pp. 579–588.

[20] D. P. Kingma et al. “Adam: A Method for
Stochastic Optimization”. In: arXiv:1412.6980
(2014).

[21] L. Prechelt. “Early Stopping - But When?” In:
Neural Networks: Tricks of the trade 1524 (1998),
pp. 55–69.

[22] PICNeuralNetworkQuasisymmetricStellarator.
https://github.com/JoaoAGCandido/PICNeural
NetworkQuasisymmetricStellarator. 2023.

[23] E. Rodriguez et al. “Constructing the
space of quasisymmetric stellarators”. In:
arXiv:2204.10234 (2023).

[24] E. Rodríguez et al. “Phases and phase-
transitions in quasisymmetric configuration
space”. In: Plasma Physics and Controlled Fusion
64 (10 2022), p. 105006.

[25] C. Oberti et al. “On torus knots and unknots”.
In: Journal of Knot Theory and its Ramifications 25
(6 2016), p. 1650036.

[26] M. Di Giovanni et al. “Finding multiple solu-
tions of odes with neural networks”. In: Com-
bining Artificial Intelligence and Machine Learning
with Physical Sciences 2020. Vol. 2587. CEUR-WS,
2020, pp. 1–7.

[27] D. Berrar. “Cross-validation”. In: Encyclopedia of
Bioinformatics and Computational Biology: ABC of
Bioinformatics 1-3 (2018), pp. 542–545.

[28] Y. Bengio. “Practical recommendations for
gradient-based training of deep architectures”.
In: Neural Networks: Tricks of the Trade: Second Edi-
tion 7700 (2012), pp. 437–478.

Fusion devices and machine learning/João CÂNDIDO

https://github.com/landreman/pyQSC
https://github.com/JoaoAGCandido/PICNeuralNetworkQuasisymmetricStellarator/
https://github.com/JoaoAGCandido/PICNeuralNetworkQuasisymmetricStellarator/

	Introduction
	Materials and methods
	Results and Discussion
	Creating and Analysing the Data Set
	Neural Networks and Regression Models

	Conclusions and Next steps

