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1 Introduction 1

Abstract

Energy production is one of Humanity’s foremost concerns. Nuclear fusion has been a tantalizing
candidate to help in this endeavor, as it would provide abundant energy fueled by common materials,
however, it has not shown working concepts yet. A promising technological path to this goal is the
stellarator, a magnetic confinement device. In the present work, we focus on a type of analytical
stellarator magnetic field studied by W. Dommaschk from 1977 onwards, that can model magnetic
islands. These Dommaschk fields are implemented within the particle tracing repository gyronimo,
while interfacing with it using NEAT, another repository. This method may serve as a faster al-
ternative to other techniques which are either more computationally intensive at modeling islands,
such as the SPEC code, or as a more exact alternative to codes that use approximations, such as
the VMEC code. Finally, some example results and graphs are shown, namely, particle trajectories,
and representations of the field through both tracing and Poincaré plots.

1 Introduction

1.1 Energy and Fusion

We live in a developing world, where demand and consumption of energy are increasing1, but also
where the main ways of producing energy have deleterious effects on our environment, and are at risk
of shortage within our lifetimes2. As with any real problem, the alternatives come with their own
caveats. Nuclear fission, with a low carbon footprint, has a strong social stigma associated due to
past catastrophes3, and renewable energies such as solar and wind would need significant power storage
infrastructure to be solely relied upon.4, 5

A long theorized and experimented upon future alternative to this modern conundrum has been
nuclear fusion, a type of reaction where two nuclei come together to form a heavier nuclide, releasing
energy in the process, and in a much more energy-dense way than the methods previously mentioned
6. The most energetically relevant reaction at the lowest viable temperatures is the Deuterium-Tritium
reaction, which occurs several orders of magnitude more often than the other allowable fusion reactions.7.
It is represented as follows:

D + T → He4(3.52 Mev). (1)

Although it has the potential to solve many of the world’s problems, the issue has always been in
engineering, since to reach the energy associated with fusion you must first overcome electromagnetic
repulsion between nuclei, to then have the strong force pull them together, which in practice requires
high temperatures or high pressures.

The two main approaches in fusion energy that are considered to have the potential to overcome
current challenges are: inertial confinement, which holds the fuel in compressed capsules, and then heats
it up either directly or indirectly with lasers 8; and magnetic confinement, which tries to get the fuel hot
enough to be in a sustained plasma state, where fusion can happen, without being pressurized. In the
latter approach, magnetic coils are used to prevent the plasma from hitting the walls of the device and
stopping the reaction. Magnetic confinement can be divided into two different approaches 9: tokamaks,
which have an axisymmetric toroidal shape, along with a central solenoid that twists the magnetic field
such that the particles oscillate between being farther or closer to the center, thus preventing drift; and
stellarators, which twist the magnetic field into whichever shape is necessary to have a steady state
operation, organizing their coils in a somewhat toroidal shape, without a central stabilization coil (see
Fig. 1). In this work, we focus on stellarators.

As computing power has progressed, so too have stellarators, because it is a very complex system 10,
with many different parameters to be optimized, such as the plasma shape, the magnetic field, the coils
which generate the field, the stability of the plasma and its heat exhaust. One widely used code for these
purposes is SIMSOPT 11, which uses the VMEC code 12 to calculate the magnetic field equilibrium.
However, VMEC assumes the existence of nested magnetic flux surfaces13. In other words, it assumes
that the magnetic field lines ergodically cover a set of toroidal surfaces. In reality, it is known that this
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1 Introduction 2

Figure 1: The stellarator (left) and the tokamak (right) concepts, both their plasma and
coil shapes

Figure 2: Representation of magnetic islands, taken from Ref. [17].

approximation does not hold everywhere. Further away from the center of the equilibrium, in regions
of resonant surfaces and at increasing pressure values, phenomena such as magnetic islands and chaos
start to become more significant. Magnetic islands are a type of structure within magnetic equilibriums.
They are essentially secondary axes in the magnetic field14, and they are an important focus of research
in stellarator design, either to control them and utilize them, or to predict how sensitive they are to
imperfections of the magnetic coils15. In Fig. 2 a section of the magnetic field formed by the NCSX
coils16 is shown. This type of graph is called a Poincaré plot and will be explored further in Section 3. It
is important to be able to simulate such structures, as they are known to be critical for the functioning of
stellarators.18, 19 The SPEC 20, 21 code can handle the existence of such complex possibilities 15, however,
optimizing stellarators with SPEC is quite a computationally intensive task 13, as the equilibrium is
found through quite a complex method, namely, multi-region relaxed magnetohydrodynamics. There
is, however, a type of analytically solvable field that can model magnetic islands.

1.2 Dommaschk Potentials

Starting in 1977 with an internal document22 and continuing through a series of papers23, 24 culminating
in the seminal work in Ref. [25], Dommaschk potentials are an analytical solution to the Laplace
equation ∆U = 0. This comes as a result of Maxwell’s equations in a vacuum, for our system. Since
the rotational of the magnetic field is null, its potential can be written as B = ∇U . The other relevant
equation states that the divergence of the magnetic field is null, thus, if we combine the two, we get the
Laplace equation. It is worth mentioning that it is not the only of its kind, as shown in Ref. [26]. They
are, however, particular in that they use cylindrical coordinates, instead of more complex curvilinear
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1 Introduction 3

coordinates such as Boozer coordinates 13. They can be written in a closed analytical form using only
powers, logarithms, sines, and cosines. This means they could possibly be a quicker alternative to other
codes that include islands, such as SPEC, although it does assume that the pressure vanishes, unlike
SPEC15. Each Dommaschk potential is characterized by two numbers, m and l, representing the number
of toroidal and poloidal periods of the field, respectively, and two coefficients. As they are solutions
to the Laplace equation, it is then possible to linearly combine several instances of these potentials,
to achieve the desired properties of the overall field. The lengths are normalized such that the plasma
region of interest is in the neighborhood of R = 1 and Z = 0. These potentials are defined as follows:

V (R,ϕ, Z) = ϕ+
∑
m,l

Vm,l(R,ϕ, Z), m ≥ 0, l = 0, 1, 2, ... . (2)

To determine the value of these potentials Vm,l, the following ansatz is used, which separates the variables
of the magnetic potential

U = Im,n(Z,R)e±imϕ,

Im,n =

k=0∑
2k≤n

Zn−2k

(n− 2k)!
Cm,k(R), k = 0, 1, ...n/2.

(3)

By plugging the ansatz back in the Laplace equation, and depending on whether Dirichlet or Neumann
boundary conditions are used, two systems of solutions for the coefficients Cm,k(R) are obtained, namely

CD
m,k = −[αj(α

∗ln(R) + γ∗ − α)k−m−j − γjα
∗
k−m−j + αjβ

∗
k−j ]R

2j+m + βjα
∗
k−jR

2j−m, (4)

CN
m,k = +[αj(αln(R) + γ)k−m−j − γjαk−m−j + αjβk−j ]R

2j+m − βjαk−jR
2j−m, (5)

with summation over j = 0, 1, 2, ..., k implied, and where

αn =
(−1)n

Γ(m+ n+ 1)Γ(n+ 1)22n+m
, α∗

n = (2n+m)αn, (6)

βn =
Γ(m− n)

Γ(n+ 1)22n−m+1
, β∗

n = (2n−m)βn. (7)

The two solutions found in Eq. (4) can then be linearly combined to yield:

Vm,l = [am,l cos(mϕ) + bm,l sin(mϕ)]Dm,l + [cm,l cos(mϕ) + dm,l sin(mϕ)]Nm,l−1, (8)

where Dm,l and Nm,l contain the dependence on Z and R, i.e. it is the term Im,l defined in Eq. (3),
however, applied to the case of Dirichlet and Neumann boundary conditions). If we impose the usual
stellarator symmetry that the magnetic field equilibrium should be identical when rotated upside down,
Vm,l(R,ϕ, Z) = −Vm,l(R,−ϕ,−Z), two of the coefficients will always vanish,

am,l = dm,l = 0 for even l,

bm,l = cm,l = 0 for odd l.
(9)

To obtain the magnetic field, the gradient of these potentials must be calculated, which is done below
in Section 2.1.

Next, we will explain the theoretical and software framework of particle tracing that these fields will
be implemented upon.
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2 Materials and Methods 4

Figure 3: Guiding center coordinates (left), taken from Ref. [28] and trajectory described
by particles in a tokamak plasma (right), taken from Ref. [29]

1.3 Gyronimo and Guiding Center

The ultimate goal is to perform optimization using these fields, using metrics such as the Greene
residue15. However, in this preliminary phase, we aim to first implement Dommaschk fields into a
particle tracing code, in this case, gyronimo27, written with the C++ language. Gyronimo uses the
guiding center equations for the movement of charged particles in magnetic fields. In the guiding center
model, the position r of each particle is divided into two components via the following equation

r = R+ ρ, (10)

where R is the guiding center position, the axis around which the particle does its cyclotronic motion,
and ρ, which is the offset from that axis to the real particle position. These coordinates can be visualized
in Fig. 3, along with an example of a particle trajectory found in tokamak plasmas. If we then use the
so-called guiding center approximation, which assumes the ρ coordinate is close enough to zero, a
coordinate is effectively eliminated from the description of the system, which means one less equation
to solve, due to the Lagrangian description. Additionally, the invariance of the magnetic moment, µ,
makes its associated equation trivial, effectively leaving us with four degrees of freedom30.

We will be interfacing with gyronimo via the NEAT31 code, which is built precisely to be compatible
with efficient C++ codes, while using more user-friendly python code. Using NEAT also means that in
the future, optimization of Dommaschk fields could be done within the same repository, since NEAT is
meant to be a harbor for particle tracing, equilibrium fields, and optimization.

2 Materials and Methods

2.1 Derivation of the Derivatives

To implement a steady-state three-dimensional field into NEAT, two methods must be created in a C++
class. The first one calculates the contravariant32 components of the magnetic field, and the second one
calculates the derivatives of such components (9 terms in total), to use in the numerical solver. Due
to the fact that Ref. [25] only provides us with the formulas for the potentials, the first and second-
order derivatives of the potentials must be derived in order to implement those methods. Because the
potentials are in a separate form, V D/N

m,l = R(R)Φ(ϕ)Z(Z), those derivatives can be worked out for each
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2 Materials and Methods 5

coordinate individually, and then combined accordingly to find the cross derivatives

∂

∂R
CD
m,k =− [αj(α

∗ln(R) + γ∗ − α+
α∗

2j +m
)k−m−j − γjα

∗
k−m−j + αjβ

∗
k−j ]R

2j+m−1(2j +m)

+ βjα
∗
k−jR

2j−m−1(2j −m), (11)

∂2

∂R2
CD
m,k =− [αj(α

∗ln(R) + γ∗ − α+
α∗(4j + 2m+ 1)

(2j +m)(2j +m− 1)
)k−m−j − γjα

∗
k−m−j

+ αjβ
∗
k−j ]R

2j+m−2(2j +m)(2j +m− 1) + βjα
∗
k−jR

2j−m−2(2j −m)(2j −m− 1), (12)
∂

∂R
CN
m,k =− [αj(αln(R) + γ +

α

2j +m
)k−m−j − γjα

k−m−j + αjβ
k−j ]R2j+m−1(2j +m)

− βjα
k−jR2j−m−1(2j −m), (13)

∂2

∂R2
CN
m,k =− [αj(αln(R) + γ +

α(4j + 2m+ 1)

(2j +m)(2j +m− 1)
)k−m−j − γjαk−m−j

+ αjβk−j ]R
2j+m−2(2j +m)(2j +m− 1)− βjαk−jR

2j−m−2(2j −m)(2j −m− 1), (14)

∂

∂Z
Im,n =

k=0∑
2k≤n

Zn−2k−1(n− 2k)

(n− 2k)!
Cm,k(R), (15)

∂2

∂Z
Im,n =

k=0∑
2k≤n

Zn−2k−2(n− 2k)(n− 2k − 1)

(n− 2k)!
Cm,k(R), (16)

while the toroidal derivatives trivially follow from equation (8), with one caveat. While we are perform-
ing the first-order derivatives, we are technically applying the gradient operator, which in cylindrical
coordinates is as follows33

∇V =

(
∂V

∂R
,
1

R

∂V

∂ϕ
,
∂V

∂Z

)
. (17)

Only the poloidal derivative term is unique, in that there is a 1/R factor included, explaining why the
previous derivatives in order of R and Z were direct. A consequence of the above-mentioned factor is
that our description no longer has perfect separation of the variables. This means that the case of the
second-order derivative that is first poloidal and then radial will be different from the case where does
derivatives are done in the reverse order. In respective order, they are as follows:

∂2

∂R∂ϕ
Vm,l =m[−am,l sin(mϕ) + bm,l cos(mϕ)]

1

R

∂Dm,l

∂R
+m[−cm,l sin(mϕ) + dm,l cos(mϕ)]

1

R2

∂Nm,l−1

∂R

−m[−am,l sin(mϕ) + bm,l cos(mϕ)]
1

R2
Dm,l +m[−cm,l sin(mϕ) + dm,l cos(mϕ)]

1

R2
Nm,l−1.

(18)
∂2

∂ϕ∂R
Vm,l =m[−am,l sin(mϕ) + bm,l cos(mϕ)]

∂Dm,l

∂R
+m[−cm,l sin(mϕ) + dm,l cos(mϕ)]

∂Nm,l−1

∂R
(19)

This also has one more implication. In Eq. (2), we see that the Dommaschk potentials have a ϕ
term that must be added, separate from all the Vm,l potentials. The contribution of that term to the
magnetic field is a (0, 1/R, 0) that must be added, which was calculated by means of Eq. (17). It also
means that a −1/R2 term must be added to the case of the second order derivative term ∂2

ϕ,R.

2.2 Implementation in gyronimo

We can now move on to the implementation. In gyronimo, we must implement an equilibrium object, in
this case, equilibrium_dommaschk, which can output the magnetic field and its derivatives. It receives
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2 Materials and Methods 6

the following inputs: a metric object which specifies which coordinates are being used in the system,
in this case, metric_cylindrical, the value of the coordinates, in this case, R,ϕ, Z, a value for m, l,
and the two coefficients, and a value for the normalization of the magnetic field, B0. Thus, the C++
constructor is as follows:

equilibrium_dommaschk(
const metric_cylindrical *g, int m, int l, double coeff1, double coeff2, double B0);

For the implementation of the derivatives, it was already done first in the SIMSOPT code, one of the
most complete open-source stellarator repositories. That implementation calculates the magnetic field,
and its derivatives, however, the output is coded to be in Cartesian coordinates. With gyronimo, we can
use the coordinates we wish, as discussed previously. Additionally, after checking that version, the terms
α/(2j+m), α(4j+2m+1)/[(2j+m)(2j+m−1)] in the Neumann coefficients’ radial derivatives, along
with the similar terms in the Dirichlet radial derivatives, were found to be missing. For this reason,
along with the work done on NEAT for this project, a pull request was done for SIMSOPT, where the
bug was fixed, and was ultimately incorporated into the open-source repository.

With this, it was possible to implement the methods

virtual IR3 contravariant(const IR3& position, double time) const override;
virtual dIR3 del_contravariant(const IR3& position, double time) const override;

which output the contravariant terms of the magnetic field, and the derivatives of those terms, respec-
tively. Gyronimo already had a built-in class to numerically manipulate a 3D vector, and another for
the partial derivatives of a 3D vector, which are the IR3 and dIR3 objects used above.

As mentioned before, a metric_cylindrical object was also required as input. It needed to be
implemented, but the process was straightforward, since most methods were very trivial to do with
cylindrical coordinates. Namely, methods needed to be added that would receive as input a three-
dimensional position, and output the following differential objects: the metric matrix, its derivative, the
cylindrical Jacobian, the derivative of said Jacobian, and then two methods which additionally receive
as input a three-dimensional field, such as a magnetic field. One method converts the field to covariant
form, from contravariant form, and the other does the opposite. All these operations were documented
in Ref. [33].

Now with the implementation of our Dommaschk equilibrium field, it was possible to utilize the
examples found in the NEAT repository to go about implementing particle tracing, but to do it in a
Dommaschk field instead. The process is done through the Runge-Kutta method of integration, applied
to the guiding center equations of motion. In essence, a few components are required to make this work.
A dommaschktrace function is created, which will be the C++ interface for the tracing code. Its header
is as follows:

vector< vector<double>> dommaschktrace(const vector<int> m, const vector<int> l,
const vector<double> coeff1, const vector<double> coeff2, const vector<double> B0,
double charge, double mass, double Lambda, double vpp_sign, double energy,
double R0, double phi0, double Z0,
size_t nsamples, double Tfinal)

The first five inputs are the same as the equilibrium_dommaschk class, however, they are now in vector
form, such that we can achieve our goal of adding multiple Dommaschk fields together, as discussed in
Section 1.2. We then have inputs for the charge and mass of the particle being simulated, then three
inputs for the initial guiding center parameters, explained further in Ref. [30], another three inputs
for the initial position in cylindrical coordinates, and then finally, two inputs for the integration, the
total time of the simulation, Tfinal, and how many time steps will be taken in that time, nsamples.
This function will output vectors of parameters that are solutions to the numeric integration, at each
time step, meaning the vectors will have a size equal to nsamples. We will later focus on four of them,
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the time and the three-dimensional position, as they are what is required for tracing the trajectory
of the particles. The function works as follows: it first creates the equilibrium_dommaschk field that
will be used, or, in the case of having received vectors in the first 5 inputs, it will instantiate multiple
equilibrium_dommaschk fields using those parameters, and then combine them through the built-in
gyronimo class created for this purpose, called linear_combo_c1. It is essentially another equilibrium
field, but which receives as input a variable number of other equilibrium fields, and makes the overall
object work as though the underlying objects were being added together, which is what it does, for each
method.

The goal is then to perform numeric integration, and thankfully there are optimized libraries that
can be used for this effect, in this case, the Boost library. The object that defines Runge-Kutta integra-
tion is boost::numeric::odeint::runge_kutta4 which can then be used to specify which integration
algorithm the integration object will use. For clarity, here is the initialization of that object in full:

boost::numeric::odeint::integrate_const(integration_algorithm,
odeint_adapter(&gc),initial_state, 0.0, Tfinal, Tfinal/nsamples, observer);

This object integrates with a constant step size. We must also specify what equations are being used,
and pass that input as an object that is properly formatted to the specifications of this function.
Thankfully, this is another part where using gyronimo benefits us greatly, as there is already an object
that defines the guiding center equations in a magnetic field, called guiding_centre, and another that
adapts that object to be ready to use in the boost numeric integrator, called odeint_adapter, thus
explaining the second input. The other inputs are the initial_state object, which contains the initial
positions and the initial v⊥. We only need four initial conditions because, as explained in Section 1.3,
there are only four non-trivial equations out of the initial six-dimensional description. We then have
inputs for the starting time, zero for simplicity, the final time, Tfinal, and the time step, given by the
total integration time divided by the number of samples, as is shown. The final input is the so-called
observer, which is the object that will be saving the solution arrays, that contain the position, time,
and other parameters, for each time step of the integration, as discussed earlier. To define this, a
class needed to be implemented, called push_back_state_and_time_dommaschk, formatted to save the
solution in a set of vectors, each of them being pushed back at each step of the integration. This defines
our C++ interface.

2.3 Transition to python

As mentioned in Section 1.3, NEAT is built to have python code interface with C++, which is the next
and final step. The library used is called pybind11, which will allow us to call functions from python,
while then using a C++ function. In this case, we want to call the newly defined dommaschktrace from
python, such that we can then do physics without being concerned about the underlying code which
makes it work. By adding a line of code in the neatpp.cpp file, the desired effect can be achieved. The
relevant part is shown here in full:

PYBIND11_MODULE(neatpp, m) {
[...] Code for the rest of NEAT’s functions that need wrapping [...]
m.def("dommaschktrace",&dommaschktrace,

"Trace a single particle in a Dommaschk equilibrium magnetic field");

Given the fact that the third argument of the m.def() line of code is simply for the purposes of documen-
tation, it is a feat of code engineering that this works with so little user input. The dommaschktrace
function can now be imported elsewhere in the python section of the code, so it is possible to de-
fine the python class that will be the interface for a user of the code. The relevant NEAT file is called
fields.py. The class that was defined there, called simply Dommaschk, has three implemented methods,
for the time being. One initializes the parameters for the field, in List[] form, to be compatible with
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3 Results 8

the vector<> form in C++. Another method returns those parameters, called gyronimo_parameters,
and the last method runs dommaschktrace, and is called neatpp_solver. One may notice, however,
that dommaschktrace also needed particle information to be run. This is explained by the fact that
this neatpp_solver method will only be called from within the particle tracing section of NEAT,
tracing.py, from within a class called ParticleOrbit. As input, ParticleOrbit requires information
on the particle, through a ChargedParticle object, along with the field being used, in this case, a
Dommaschk object that was just defined. Finally, it also receives the nsamples and tfinal parameters.
Upon being initialized in this way, it runs the particle tracing, which can then be accessed through the
object’s methods. A practical example of the completed code is as follows:

g_field = Dommaschk(m=[5,5], l=[2,4], coeff1=[1.4,19.25], coeff2=[1.4,0], B0=[1,1])
g_particle = ChargedParticle([...]Starting position and particle parameters [...])
g_orbit = ParticleOrbit(g_particle, g_field, nsamples=nsamples, tfinal=tfinal)
[...]Using tracing information by accessing the g_orbit object [...]

The g_field configuration shown is the one used throughout Section 3
The bulk of the work was the above implementation, along with unit testing of the results using a

Mathematica notebook for verification. Some preliminary tests and results were performed and obtained.
These are presented in the following section.

3 Results

With the NEAT repository, there are plotting macros already created, although not all of them are
currently compatible with the implementation of Dommaschk fields shown here, such as, for example,
three-dimensional trajectory plots, static or animated. This was because there is currently no output file
for the above-implemented fields, and because plasma boundaries are not explicitly present, both things
that are required for those built-in methods in NEAT. However, it was possible to use the examples in
NEAT to re-implement the desired plots through python’s matplotlib library. In Fig. 4, phase space
graphs and also the three-dimensional trajectory line are shown. Each row of the figure shows graphs
corresponding to the following positions and particle settings:

# Initialize an alpha particle at a radius = r_initial
r_initial = 1.03#1.09#1.15 # meters, one at a time
theta_initial = 0.0 # initial poloidal angle
phi_initial = 0.00 # initial Z
B0 = 1 # Tesla, magnetic field on-axis
energy = 100000 # electron-volt
charge = 2 # times charge of proton
mass = 4 # times mass of proton
Lambda = 0.8 # = mu * B0 / energy
vpp_sign = -1 # initial sign of the parallel velocity, +1 or -1
nsamples = 2000 # resolution in time
tfinal = 3e-5 # seconds

How large nsamples needs to be was decided based on a conservation of energy plot not shown here,
but output by NEAT upon using the .plot method of a ParticleOrbit. If energy had varied more
than 10−6 in the graph, nsamples was increased further, and the simulation was ran once more. The
field configuration is the one mentioned at the end of Section 2.3

One thing of note was the confinement of this field configuration. For energies corresponding to that
of alpha particles, 3.52×106 eV, the particle tracing showed those specimens escaping. This makes sense,
as this configuration was optimized before 1986, far before modern optimization tools, and computing
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Figure 4: Phase-space and three-dimensional representations of trajectories of particles
starting from R = 1.03, 1.09, 1.15, respectively
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Figure 5: Phase-space and three-dimensional representations of field lines, originating
at R = 1.15

power. The solution to have confined particles in the above graphs was simply to decrease the energy
by an order of magnitude, to 105.

Another experiment that can be done in this particle tracer is a visualization of the field that
has been programmed. By increasing the charge of the particle being simulated to several orders of
magnitude above that of the elementary charge, while keeping the mass low, a particle that follows the
field lines closely is simulated, effectively showing us said field lines. We can apply the same methods as
before, while increasing the simulation time, to visualize the three-dimensional surfaces of this stellarator
configuration. This can be seen in Fig. 5. Only four settings were changed, r_initial=1.15, the charge
was set to be 1e12, tfinal was set to be in the order of 1e-4, and nsamples was increased accordingly,
to keep the simulation accurate, as described before.

There is also another way of visualizing field lines, which is that of a Poincaré plot, like Fig. 2. It can
be achieved by doing a scatter plot, and adding a point every time the trajectory passes by a plane of
constant ϕ, in this case, the chosen plane was ϕ = 0. As we are doing numerical simulations, a tolerance
of 0.1 was added to this angle detection. Two low-resolution examples are represented in Fig. 6. Code
for the right plot was as follows:

r_initial = 1.02 # meters
theta_initial = 0.0 # initial poloidal angle
phi_initial = 0.00 # initial Z
B0 = 1 # Tesla, magnetic field on-axis
energy = 100000 # electron-volt
charge = 100000000000000 # times charge of proton
mass = 1 # times mass of proton
Lambda = 0.8 # = mu * B0 / energy
vpp_sign = -1 # initial sign of the parallel velocity, +1 or -1
nsamples = 80000 # resolution in time
tfinal = 3e-3 # seconds
g_field = Dommaschk(m=[5,5], l=[2,4], coeff1=[1.4,19.25], coeff2=[1.4,0], B0=[B0,B0])

print("Creating Poincaré plot")
start_time = time.time()
# Set the tolerance for checking if phi is close to a multiple of 2*pi
tolerance = 0.01
for i in range(8):

g_particle = ChargedParticle(
r_initial=r_initial+i*0.0257,
theta_initial=theta_initial,
phi_initial=phi_initial,
energy=energy,
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Lambda=Lambda,
charge=charge,
mass=mass,
vpp_sign=vpp_sign,
)
g_orbit = ParticleOrbit(
g_particle, g_field, nsamples=nsamples, tfinal=tfinal
)
# Find the indices where phi is close to a multiple of 2*pi
indices = np.where(np.abs(g_orbit.varphi_pos % (2*np.pi)) < tolerance)
# Plot the values where phi passes through 2*pi
plt.scatter(g_orbit.r_pos[indices], g_orbit.theta_pos[indices],c=np.random.rand(1,3),s=5)

total_time = time.time() - start_time
print(f"Finished in {total_time}s")
# Add labels and title to the plot
plt.xlabel(’R’)
plt.ylabel(’Z’)
plt.title(’Values of (R, Z) where phi passes through 2*pi’)
# Show the plot
plt.show()

Figure 6: Two examples of Poincaré plots obtained, for ϕ = 0, one with more resolution
(left) and the other covering a wider interval (right)

4 Conclusion and Next Steps

As a work focused on implementation, the foremost conclusion is that anyone wanting to explore the
physics of these fields should go and use them, as all of the work performed here is open-source, and
publicly available in Ref. [31]. In this, there was success in building a tool that traces particles in a
magnetic island scenario. By no means is this work complete, however. There are direct things missing
that are relatively simple to add using already implemented examples in NEAT, such as doing animated
plots of the trajectory, or ensemble particle tracing where many particles are simulated simultaneously.
One step beyond that would be performing code optimizations, such as adding parallel computing.
Another implementation would be using the field_line.hh file in gyronimo to simulate field lines
more faithfully, instead of the method used of increasing the charge many orders of magnitude.

As mentioned in the text, NEAT is also used for the optimization of fields. It includes interfaces for
doing so, with SIMSOPT and scipy as the libraries in charge of that. For this reason, the immediate
next step would be to perform field optimization of Dommaschk fields, using the particle tracer to test
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particle confinement, providing a possible objective test of optimization, though as mentioned, there
are many.

In a more mathematical vein, another future goal would be finding a way to project these Dommaschk
fields onto the space of other field configurations, such that any field can be represented by a linear
combination of Dommaschk fields, essentially the inverse of what we have now. A possible way to
implement this would be to find a change of basis transformation between specific vacuum fields and
Dommaschk potentials.
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